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An approximate computation is proposed for heating a massive optically dense body 
in a furnace with predominant thermal radiation mechanism. 

Heating of a massive body with a flat surface is computed in this paper. The exact 
values of the dimensionless body surface temperature for b = 1 are represented in the form 
of nomograms [i] and depend on two arguments Bo and Fo. An approximate solution is proposed 
in [2] in which the concept of variable depth of the layer being heated with a parabolic temper- 
ature change is proposed. In contrast to the exact solution, this solution depends on one 
argument z = 1.5Fo/Bo 2. The characteristic dimension A, enters the numbers Bo and Fo but it 
vanishes in the argument z. An ultimately simple graphical solution is given a foundation 
there. It is shown in [3] that both approximate solutions are conserved when taking account 
of different emissivities and absorptivities of the furnace space. The new number b is 
here introduced in the dimensionless parameters. Unfortunately, the analytic solution is ob- 
tained sufficiently awkward, while the graphical solution is suitable just for computations 
by hand. An analytical solution is proposed below that uses the concept of the thickness of 
the heated layer with a parabolic temperature change from within, as in [2, 3]. However, the 
thickness is now included in the computation directly, whereupon it changes completely. In 
particular, the argument is expressed as follows D = ~z/l.5 = F~F~o/Bo e. The quantity z has the 
meaning of dimensionless time, similarly to Fo, under given boundary conditions. Correspond- 
ingly, D is proportional to the square root of the heating time. If the change in boundary 
conditions with the temperature of the medium is taken into account, then OouT~Te . Evidently 
the doubling of the temperature of the furnace medium is equivalent to a 64 times rise in the 
exposure time. At first glance, the dimensionless body surface temperature ~0 =T0/(bTe) is 
determined for a given initial va!ue 6, =~mm that is identical along the depth of the body. 
The analytic solutions in both approximate methods are obtained implicitly. 

In the formula the thickness of the heated layer is 

Am = e Fao~ (i) 

for boundary conditions of the first kind [4], c1~6/~= 3.385. For boundary conditions of 
the second kind c2 = 1.5/ierfc 0 = 2.6586. 

In the first case the heat flux has an infinitely large value initially, and then dimin- 
ishes rapidly. In the second its value is constant. Under real conditions, the heat flux can 
be taken constant only in a short initial period. It then diminishes in connection with 
the rise in body surface temperature. Therefore, c ~ c2 in a short initial period. Subse- 
quent changes in the coefficient c are difficult to predict. It must be emphasized that a set 
of exact solutions with different parameters Boe and Fo correspond to this approximate solution 
for the value of DI. In principle the method cannot assure an exact solution for an arbitrary 
selection of c with the exception of the limit D + 0. It is only possible to reduce the error 
and expand the limits of utilization of the method by introducing the function c(D; 8,) at least 
in a rough approximation. Difficulties arise in that the "exact" solutions are taken off from 
nomograms in [I] by extrapolating in the parameters Boe, Fo, and 8, with a substantial error. 

The crux of the method is simple. As in [3], the boundary condition 

q = ~ (~T~ - -aTe)  + ~ (T - -  To) 

is simplified by introducing the equivalent temperature T e for which 
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Fig. I. Dependence of the dimensionless 
temperature 0 on the square root of the 
dimensionless time r i) by the nomograms 
in  [ 1 ] ;  2) by [ 2 ] ;  3) by ( 6 ) ;  4) by ( 7 ) ;  
~, = 0 (a); 0.75 (b). 

q ---- (r ( Tg --aT04). (3) 

From the equality of the right sides of (2) and (3) 

r e  = r ~ 1  + ~ ll - (To/T)/(Y~T~). (4) 

T h i s  e x a c t  r e l a t i o n s h i p  d i f f e r s  s u b s t a n t i a l l y  f rom t h e  a p p r o x i m a t e e m p i r i c a l  r e l a t i o n  

3 

T e := T F 1 + 0 ,25~  (~tA,)/~eT*) 2 ; 

m o r e o v e r ,  u t i l i z a t i o n  of  t h e  t e m p e r a t u r e  To to  be  d e t e r m i n e d  i n  t h e  r i g h t  s i d e  o f  (4) p resumes  
an i t e r a t i v e  s o l u t i o n  of  t h e  p r o b l e m w i t h  s u b s e q u e n t  r e f i n e m e n t  o f  To. 

For  a p a r a b o l i c  change  i n  t h e  t e m p e r a t u r e  i n  t h e  l a y e r  h m i t s  mean v a l u e  e q u a l s  AT0/3.  
The h e a t  t r a n s f e r  c o n d i t i o n s  do n o t  change  i f  t h e  s u b l a y e r  i s  c o n s i d e r e d  i s o t h e r m a l  w i t h  
t e m p e r a t u r e  To and t h i c k n e s s  A0 = Am/3. The a v e r a g e  h e a t  f l u x  d e n s i t y  on t h e  s u r f a c e  i s  
w r i t t e n  p h e n o m e n o l o g i c a l l y  

.q  = pC~hoATo/~ 

or, ltaking (i) into account 

$---- (c/3) I'ie,9c . ATo/V-~. 

The instantaneous heat-flux density is written in the form 

c , ~ /  dTo ATo '~ 
= _ _  v~opc M | ,-vvT= + q = -q-i. T d'~ 6 \ a v ' r  l / ~  ] 

(5) 

The equality of the right sides of (3) and (5) results in the differential equation 

d B h~ 6D 

d ~---2 + -r 

where  0 ~ u . ~  1, A~ ~- ~ - -  ~., [3. ~ ~1~=0. 

Let us use the notation Po~Pm~x~-plu=l.  

(1 - ~ )  = o, ( 6 )  
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Fig. 2. Spread in the approximate solutions with 
respect to the "exact" values taken off the 
nomograms in [i]. 8: i) from (6); 2) from (7); 
B, = 0 (a); 0.75 (b). 

Equation.(5) is exact for q = q = const when c = c2. It is used as an approximate equation 
for the change in heat flux density with tempertureTo of the heating surface with average 
value c. 

The equality q = ~ means d~/d~ : A~/u Equation (5) simplifies into two versions. In 
the first d~/dF~= 30(I--~)/c and the solution takes the form 

12____DD = In 1 + ~o t- 2 arctg ~o - -  C, 
c 1--1~o 

where 

C : In 1 + I~, + 2 arctg 13,. 
l - -  13, 

In the second version 3D/c = (~o-- ~,)/(I -- ~) , where ~, ~ ~-~< ~0 . In the approximate so- 
lution we set ~ ~ n~ and we determine the coefficient n by adjustment to the exact solution. 
For n = 1 and c=c2~|.5~ (b= |) this formula is obtained directly from the solution in [4, 
p. 125]. Finally 

13o - -  15. 3D 
I - n~ c (7) 

In a first approximation we use 

c-= 2.66 + 0 . I  VD/(1 + ~ , /~ ,  n =  0.65 + 0.35~,. 

The d a t a  in  [2] ,  t he  n u m e r i c a l  s o l u t i o n  of  t h e  d i f f e r e n t i a l  e q u a t i o n  (6 ) ,  and t h a t  o b t a i n e d  
by t h e  s i m p l e s t  f o r m u l a  ( 7 ) a r e  compared in  F i g .  1. The s p r e a d  in  t h e  p o i n t s  1 i s  e x p l a i n e d  
by their dependence on the two arguments Bee and Fo in contrast to just the D in ours, and 
z = 1.5D 2 in [2]. The spread in the approximate solutions relative to the "exact" solution is 
shown in Fig. 2. It increases because of the fact that values with not more than two signifi- 
cant figures can successfully be taken off the nomograms in [i]. On the whole, (7), which is 
recommended for practical engineering computations, yields results no worse than the other 
approximate methods. 

The curvature of the particle surface is taken into account by using the factor Y in the 
parameter D § yD. For a flat surface y = l, for cylinders and spheres with two terms in the 
series expansion ?=.1+AmPUl(god ) and ~ ~ I +A~I~/(~) respectively. Upon substituting 
Amfrom(l) ?=1+F~a0~/(~and ?: ] +I/-~a0~/d As we see, the temperature of a convex surface 
increases more rapidly. But the estimates are valid only for uniform exposure of the parti- 
cle surface, which is not usually assured in practice. 

In high-temperature zones of rotating furnaces up to 85% of the heat is transferred to 
the charge through the open surface of the layer, qhe mean time of exposure of the surface 
elements of the interspersing particles is about a second. Nevertheless, the danger of a 
strong reduction in heat flux is expressed in connection with the rise in surface temperature. 
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Observations ~re made in [5] on the temperature of nepheline cake grains in the drum of a 
laboratory apparatus. ]he pyrometers were directed at the upper and lower edges of the 
layer surface. The source of irradiation was on the drum axis. the temperature radings 
were explicitly exaggerated. Computations we made do not have sufficient accuracy primarily 
because of the rough estimate for the mean time of exposure of particles in complicated 
motion. Nevertheless, it can be concluded that a noticeable, although not very substantial 
reduction in the heat flux is obtained. 

NOTATION 

a0 , effective thermal diffusivity coefficient, m2/sec; ~ andS, reduced values of the 
emissivity and absorptivity of the furnace space; ~e, effective heat-conduction coefficient, 
W/(m-K); Cm, specific heat of the body, J/(kg.K); P, body density taking account of its 
porosity, kg/m3; T and Te, actual and equivalent, from (4), temperatures of the furnace medium; 
To, body surface temperature, ~ A m , depth of body heating from (i); h., characteristic 
dimension of the body being heated, m; �9 and ~0, running and total exposure time, sec; q, 
heat-flux density on the body surface, W/m 2" ~c, convective heat-transfer coefficient 

4 
W/(m 2 -K) ; z, W.seffl/21(m2.K); o=5.67.10-s W/(m2.K~). U=T/TO; b = ~z'~$ ; ~ = To/(b%); D = FF-6/Bo e= ~T~ ~0/(b~); 

Fo = aoT/h 2,; BO~e= b~e/~OT ~ h,); O =(To--Tom)/(bTe--Tom); ~,~[rom; ~0 ~ ~lr0~a~ 
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DETERMINATION OF GENERALIZED ANGULAR COEFFICIENTS WITH CONSIDERATION 

OF SELECTIVITY IN ABSORPTION BY THE MEDIUM 

V. I. Antonov and L. I. Zdorovova UDC 536.3 

Generalized angular coefficients are calculated with consideration of selectivity in 
absorption by the medium which consists of gaseous CO2 and H20. 

In many technological devices which use natural fuels as a n energy source radiant heat 
exchange is determined to a significant degree by the radiating properties of the gases 
CO2 and H20. As many studies [1.-5] have shown, these gases emit and absorb radiation with 
significant selectivity. However, consideration of selectivity in heat-exchange calculations 
for a system of bodies is an extremely difficult problem, because of lack of knowledge of the 
dependence of the absorption coefficient of mixtures of these gases k on frequency ~ and c due 
to problems of a purely computational character. As a rule, technical calculations employ a 
selective-gray approximation, dividing the entire spectrum of thermal radiation into absorbing 
and nonabsorbing bands. However, such a method leads to a significant increase in the volume 
of calculations due to the increase in the number of zonal equations. Below we will demon- 
strate how selective absorption of the gaseous medium can be considered by calculating 
generalized angular coefficients. 
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